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Introduction

• Child development is about the intergenerational transmission of
poverty and human capital development.

• It matters because poverty is associated with permanent cognitive and
health deficits with longer term effects.

• Understanding HC development involves understanding:
1 The human capital production function from an early age and the role of

investments
2 what may be the optimal structure of investments
3 How parents make decisions and what is their information set
4 How effective policy can be and how it interacts with parental decisions
5 It is an interdisciplinary field that needs to draw from economics,

psychology and measurement, nutrition and neurology and even genetics.



Outline

1 Estimating human capital production functions
2 Models of the family and investing in children
3 Field Experiments on child development and interpreting them.



Human Capital production functions:
Background

• Suppose we wish to estimate a human capital production function
• Fundamentally the problem we need to face is that neither output nor

input is directly observable.
• We tend to have measures that reveal indirectly inputs and outputs in

the human capital production function
• From this perspective this is a (complex) measurement error problem:

inputs and output is measured with error



Background

• The flip side of this is that all the measures we observe are substantive
in themselves

• However they may be generated by a small set of latent factors
• For example how many factors underlie asset prices? (King, Sentana,

and Wadhwani, 1994 Econometrica)
• How many dimensions does intelligence have?
• We will work with the first interpretation: rather than investigating the

appropriate number of dimensions we will assume them known and
discuss estimation of HC production functions



Linear Production Functions
Formulating, Identifying and Estimating the Technology of Cognitive and

noncognitive Skill Formation by Cunha and Heckman JHR, 2008

• Define two dimensions of skill: cognitive skill (θ c ) and non-cognitive
skill (θN )

• Now consider a production function describing skill accumulation

θ c
it+1 = µc + γc1 θ c

it + γc2 θN
it + γc3 θ I

it + ηc
it

θN
it+1 = µN + γN1 θ c

it + γN2 θN
it + γN3 θ I

it + ηN
it

• The term η
j
it is an unobserved random factor that does not correspond

to any measurement.

• For now we will assume it is independent of the latent factors θ
j
it

(exogeneity)
• The model above implies that past skill levels and investments θ I

it
produce future cognitive and non-cognitive skills

• It is designed to reflect the technological constraints that govern human
capital policy



Linear Production Functions

• The point is that we cannot measure the θ directly (without error).
• Instead we have a set of measurements in the form of test scores,

behavioral problem index and HOME score (Home Observation
Measurement of the Environment)

• It turn out that we need a minimum of two measurements per factor if
all measures are independent of each other.

• Take the system of measurement equations (and henceforth drop the
time index t unless needed)

mj
ik = aj0k +aj1kθ

j
i + ε

j
ik j = c ,N, I k = 1,2

• These equations relate what we actually observe (m) to the latent
factors (θ ).

• The ultimate aim is to estimate the joint distribution of θ from which
we can then deduce E (θ

j
it+1|θit), j = c ,N



Identification

• At this point we need the following normalisations:
• Since we do not observe the latent factors we need to normalize one of the

factor loadings per factor to 1(e.g. aj1 = 1)

• We also assume that E(θ
j
i ) = 0 and hence E(mj

ik) = aj0k . Hence forth we
will assume measurements are zero mean.



Measurement Error

• In its simplest form the measurement errors are assumed iid (classical)
• In general we can allow for dependence of errors across measurements

(depending on how many measurements we have)
• Importantly we do not need to specify the distribution of the

measurement errors



Kotlarski Theorem

• The key theorem in this literature is the Kotlarski theorem (1967 Pacific
Journal of Mathematics):

• Under the measurement error structure Y = θ + ε with at least two
measures per latent factor and iid errors the distribution of the latent
factors and of the measurement errors is identified.

• This powerful result is at the heart of all the results. The important
point is that all we need is independence of the measurement errors.

• Everything else is nonparametrically identified.



The Main Idea

• The key idea about identification is as follows. It is a deconvolution
problem.

• Take a one factor model and assume known factor loadings.
• The data provides the unconditional distribution of observables f (m).
• This can be written as

f (m) =

ˆ
fm(m|θ)g(θ)dθ

• The measurement equations together with the distribution of
measurement errors define fm(m|θ).

• Effectively the theorem states that if we can write
fm(m|θ) = f1m(m1|θ)× f2m(m2|θ) then we can identify
nonparametrically the form of f1m, f2m and the object of interest g(θ).



Estimation

• The problem is not quite the from we want it because of the factor
loadings

• However redefining the measurements as mj
ik/a

j
1k they are now in the

form of the Kotlarski theorem.
• Thus estimation takes place in two stages:

1 The factor loadings are estimated aj1k first.
2 The joint distribution of the latent factors is then estimated



Estimating the Factor Loadings

• Write the measurement system as

M = Θ×A′+E

where
• M is N× (p×k) where p is the number of measures per factor, k is the

number of latent factors and N is the number of observations
• Θ is the matrix of latent factors. Its dimensions is N×k
• A is the matrix of factor loadings. It is (p×k)×k
• E is the matrix of all measurement errors

• Embedded in A are the normalization restrictions (so some values are
already set to one) and the fact that each measurement corresponds to
one factor (this can be relaxed). The latter are zero restrictions.



Estimating the Factor Loadings

• This formulation implies

V (M) = AV (Θ)A′+V (E )

where V (X ) is the covariance matrix of X .
• From the data we know V (M) (we can estimate it). These are

1
2 (pk)(pk +1) known moments

• Before any zero restrictions and normalizations the unknowns are

k2p+
1
2
k(k +1) +

1
2
pk(pk +1)

• However, with the normalizations, the zero restrictions and the iid
assumptions of the ε the system is overidentified.

• Solving this system subject to the restrictions provides the factor
loadings and the covariance matrix of the factor loadings.

• Note that this step does not use any distributional assumptions



Example

• As an example consider a two factor model with three measurements
for each factor

m1i = θ1i +u1i
m2i = a2θ1i +u2i
m3i = a3θ1i +u3i

m4i = θ2i +u4i
m5i = b2θ2i +u5i
m6i = b3θ2i +u6i

• Assume E (ukiusj ) = 1(k = s)σ2
k

• Note the normalization restrictions and the zero restrictions
• We have 21 distinct observed moments and 13 unknowns: the variance

matrix of of θ (3 elements), a2, a3, b2, b3 and σ2
k , k = 1, ...,6



Example

V (m1) = V (θ1) + σ2
1

C (m1,m2) = a2V (θ1)
C (m1,m3) = a3V (θ1)
C (m2,m3) = a2a3V (θ1)

• Hence a2 = C (m2,m3)/C (m1,m3); V (θ1) = C (m1,m1)/a2 and so on.
• Note the scope of nonclassical measurement error since the system is

overidentified



Non-Classical Measurement error

• Cunha and Heckman extend their model for non-classical measurement
error:

• Assume that there is one measurement (say the first one) whose errors are
independent from all others (across measurements and time periods)

• Otherwise all other errors can be arbitrarily dependent
• We still impose that measurements are independent of the actual factors -

this is crucial.

• This relaxation of restrictions still allows for at least two independent
instruments - such an assumption is at the heart of this approach



Estimation

• Now Suppose we assumed that the latent factors are jointly normal.
• This is consistent with the linear production function, although there

are other distributions that have linear conditional expectations
• Under joint normality our job is finished because knowing the joint

distribution defines the conditional mean
• Under linearity even without normality we can use an IV strategy as

well. This is the approach in Cunha and Heckman (JHR)



Estimation

• Take the structural equations

θ
c
it+1 = γ

c
1 θ

c
it + γ

c
2 θ

N
it + γ

c
3 θ

I
it + η

c
it

• Use the measurement equations to replace the latent factor by a proxy:

θ
j
it = mj

i1t − ε
j
i1t

• Note that if all measurements are rescaled by dividing by the factor
loadings the coefficients will be scaled in the same way whatever
measurement we use as a proxy.



Estimation

• OLS will not work because of measurement error: ε and the proxies m
are correlated.

• Use the other measurement (mj
i2t) as an instrument. The measurements

errors must be independent
• This also gives another perspective to the numerous regressions

including such proxies
• The idea of using two independent measures to solve the measurement

error problem in linear and nonlinear models goes back some time (e.g.
Hausman, J., H. Ichimura, W. Newey, and J. Powell, 1991,
Measurement errors in polynomial regression models, Journal of
Econometrics 50, 271-295).



Endogenous inputs

• Up to now we have assumed the inputs to be exogenous.
• Suppose the inputs are endogenous.
• In this context this means that there are unobserved inputs that do not

correspond to any measurements (otherwise we could have included
further latent factors in the same way.

• In Cunha and Heckman they suggest a fixed effects approach

η
j
it = α

j
λi +ujit

• With variation over time we can now take first differences of the proxies

∆mc
i1t+1 = γ

c
1 ∆mc

i1t + γ
c
2 ∆mN

i1t + γ
c
3 ∆mI

i1t + ∆ucit

• Use as instruments the first differences of the other proxy (∆mj
i2t )

• Notice that we can now use the residuals in levels to also estimate the
distribution of the fixed effect λand the factor loadings, based on the
Kotlarski theorem.



Anchoring

• Even after estimating the production function it is hard to interpret the
results if we do not know what the units of measurement refer to.

• A useful approach is to anchor the results to some outcome of interest,
such as earnings

• So consider the regression of earnings on the latent factors

Yi = a1θ
c
it +a2θ

N
it +a3θ

I
it + vit

•

The coefficients on the latent factors transform the latent factor units to
the units of the left hand side; So we can use these to transform the
coefficients of the other equations



Using Factor Scores to estimate linear
factor models

From Heckman, Pinto and Savalyev, American Economic Review 2010

• It is also possible to predict factor scores for each individual and use
these for estimation or descriptive statistics.

• Consider the measurement equation written for one observation

Mi = Aθi +Ei

where θi is the k×1 vector of latent factors for the ith individual



Using Factor Scores to estimate linear
factor models

From Heckman, Pinto and Savalyev, American Economic Review 2010

• We need a prediction θ̂i such that E ((̂θi ) = θi )

• Consider Some matrix L such that LA = I

• A solution is given by Barttlet’s (1937) estimator where we minimize
the MSE of the prediction LMi subject to the restriction LA = I .

• the optimal is obtained by regressing the measures on the factor
loadings by GLS where the weight matrix is given by the variance of Ei

θ̂i = (A′Var(E )−1A)−1A′Var(E )−1Mi

where L = (A′Var(E )−1A)−1A′Var(E )−1.
• Bartlett, M. S. (1937) The statistical conception of mental factors,

British Journal of Psychology



Using Factor Scores to estimate linear
factor models

From Heckman, Pinto and Savalyev, American Economic Review 2010

• This procedure leads to an unbiased prediction of the latent factors for
each individual

• However, these factor scores include estimation error, which is not
orthogonal to the predicted latent factor will cause attenuation error.

• We can use the structure of the measurement error to correct for the bias



Correcting for measurement error
• Suppose we wish to estimate a regression of the form

yi = θ
′
i β + εi

• The factor score method replace θi by θ̂i where θ̂i = θi + vi with vi
being the measurement error.

• By construction we have that Σ
θ̂

= Σθ + Σv where Σc is the
covariance matrix of c

• We have that β̂ = (θ̂ ′θ̂)−1θ̂yi

• Now note that Cov(θ̂ ,θ) = Σθ . Hence

plimθ̂ = Σ−1
θ̂

Σθ β

• We already have an estimate of Σθ and of Σ
θ̂

.

• So we can premultiply by an estimate of Σ−1
θ

Σ
θ̂

to correct for the bias:

β̃ = Σ̂−1
θ

Σ̂
θ̂

β̂



Results from Cunha and Heckman

• The research question is:
• How do skills get formed?
• How persistent are initial conditions
• What is the productivity of investments
• How does the production function between cognitive and noncognitive

skills differ



The Data
Table 1
Summary Dynamic Measurements: White Children NLSY/1979

Age 6 and 7 Age 8 and 9 Age 10 and 11 Age 12 and 13

Observations Mean
Standard
Error Observations Mean

Standard
Error Observations Mean

Standard
Error Observations Mean

Standard
Error

Piat matha 753 21.0376 0.5110 799 0.0423 0.6205 787 0.7851 0.6101 690 1.2451 0.5783
Piat reading recognitiona 751 21.0654 0.4303 795 20.0932 0.6543 783 0.6179 0.7334 688 1.1442 0.7852
Antisocial scorea 753 0.0732 0.9774 801 20.0843 1.0641 787 20.0841 1.0990 717 20.0658 1.0119
Anxious scorea 778 0.1596 1.0016 813 20.0539 1.0187 813 20.0753 1.0771 730 20.0664 1.0561
Headstrong scorea 780 0.0192 0.9882 813 20.2127 1.0000 812 20.2146 1.0416 729 20.2123 1.0572
Hyperactive scorea 780 20.0907 0.9673 815 20.1213 1.0148 813 20.0983 0.9902 729 20.0349 0.9910
Conflict scorea 779 0.0177 0.9977 815 20.0057 0.9935 814 20.0441 1.0304 731 20.0472 1.0420
Number of booksb 629 3.9173 0.3562 821 3.9220 0.3104 676 3.6746 0.6422 730 3.6315 0.6768
Musical instrumentc 628 0.4650 0.4992 821 0.4896 0.5002 674 0.5504 0.4978 728 0.5907 0.4921
Newspaperc 629 0.5326 0.4993 821 0.5043 0.5003 674 0.4985 0.5004 728 0.5000 0.5003
Child has special lessonsc 627 0.5470 0.4982 820 0.7049 0.4564 672 0.7247 0.4470 727 0.7717 0.4200
Child goes to museumsd 628 2.2596 0.9095 821 2.3082 0.8286 672 2.2604 0.8239 729 2.2195 0.8178
Child goes to theaterd 630 1.8111 0.8312 820 1.8012 0.7532 674 1.8309 0.8000 728 1.8475 0.7920
Natural logarithm of family incomee 865 10.4915 1.3647 936 10.4494 1.5689 881 10.5454 1.3168 795 10.6169 1.1877
Mother’s highest grade completedf 1053 12.9620 2.2015 1053 12.9620 2.2015 1053 12.9620 2.2015 1053 12.9620 2.2015
Mother’s arithmetic reasoning scoreg 776 0.6050 1.0132 776 0.6050 1.0132 776 0.6050 1.0132 776 0.6050 1.0132
Mother’s word knowledge scoreg 776 0.5894 0.7666 776 0.5894 0.7666 776 0.5894 0.7666 776 0.5894 0.7666
Mother’s paragragh composition scoreg 776 0.5464 0.7311 776 0.5464 0.7311 776 0.5464 0.7311 776 0.5464 0.7311
Mother’s numerical operations scoreg 776 0.4945 0.8189 776 0.4945 0.8189 776 0.4945 0.8189 776 0.4945 0.8189
Mother’s coding speed scoreg 776 0.4554 0.8084 776 0.4554 0.8084 776 0.4554 0.8084 776 0.4554 0.8084
Mother’s mathematical knowledge scoreg 776 0.5297 1.0259 776 0.5297 1.0259 776 0.5297 1.0259 776 0.5297 1.0259

a. The variables are standardized with mean zero and variance one across the entire CNLSY/79 sample.
b. The variable takes the value 1 if the child has no books, 2 if the child has 1 or 2 books, 3 if the child has 3 to 9 books and 4 if the child has 10 or more books.
c. For example, for musical instrument, the variable takes value 1 if the child has a musical instrument at home and 0 otherwise. Other variables are defined accordingly.
d. For example, for ‘‘museums,’’ the variable takes the value 1 if the child never went to the museum in the last calendar year, 1 if the child went to the museum once or

twice in the last calendar year, 3 if the child went to the museum several times in the past calendar year, 4 if the child went to the museum about once a month in the last
calendar year, and 5 if the child went to a museum once a week in the last calendar year.

e. Family Income is CPI adjusted. Base year is 2000.
f. Mother’s Highest Grade Completed by Age 28.
g. Components of the ASVAB Battery. The variables are standardized with mean zero and variance one across the entire CNLSY79 sample.
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No Omitted Inputs

have been used extensively as inputs to explain child outcomes (see, for example,
Todd and Wolpin 2005).23 Web appendix Tables 1–8 show the raw correlations of
the home score items with a variety of cognitive and noncognitive outcomes at dif-
ferent ages of the child.24 Our empirical study uses measurements on the following
parental investments: the number of books available to the child, a dummy variable
indicating whether the child has a musical instrument, a dummy variable indicating
whether the family receives a daily newspaper, a dummy variable indicating whether
the child receives special lessons, a variable indicating how often the child goes to
museums, and a variable indicating how often the child goes to the theater. We also
report results from some specifications that use family income as a proxy for parental
inputs, but none of our empirical conclusions rely on this particular measure.
As measurements of noncognitive skills we use components of the Behavior Prob-

lem Index (BPI), created by Peterson and Zill (1986), and designed to measure the
frequency, range, and type of childhood behavior problems for children aged 4 and
older, although in our empirical analysis we only use children aged 6-13. The Behav-
ior Problem score is based on responses from the mothers to 28 questions about

Table 2
Unanchored Technology Equations:a Measurement Error is Classical, Absence of
Omitted Inputs Correlated with ut White Males, CNLSY/79

Noncognitive Skill uNt+1
! "

Cognitive Skill uCt+1
! "

Independent Variable (1) (2) (3) (4) (5) (6)

Lagged noncognitive skill, uNt
! "

0.884 0.884 0.884 0.028 0.028 0.028
(0.021) (0.021) (0.021) (0.013) (0.013) (0.013)

Lagged cognitive skill, uCt
! "

0.003 0.003 0.003 0.977 0.977 0.977
(0.013) (0.012) (0.013) (0.038) (0.038) (0.038)

Parental investment, uIt
! "

0.072 0.078 0.080 0.064 0.069 0.071
(0.020) (0.021) (0.024) (0.013) (0.014) (0.015)

Mother!s education, S 0.004 0.004 0.004 0.003 0.003 0.003
(0.008) (0.008) (0.008) (0.010) (0.010) (0.010)

Mother!s cognitive skill, A 20.006 20.006 20.006 0.025 0.025 0.025
(0.006) (0.006) (0.006) (0.009) (0.009) (0.009)

a. Let u#t ¼ uNt ; u
C
t ; u

I
t

! "
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

ukt+1 ¼ gk1u
N
t + gk2u

C
t + gk3u

I
t +c

k
1S+c

k
2A+hk

t :

In this table we show the estimated parameter values and standard errors (in parentheses) of
gk1; g

k
2; g

k
3;c

k
1; andc

k
2 in Columns 1–6. In Columns 1 and 4, the parental investment factor is normalized

on the log-family income equation. In Columns 2 and 5, the parental investment factor is normalized on
trips to the museum. In Columns 3 and 6, we normalize the parental investment factor on trips to the theater.

23. As discussed in Linver, Brooks-Gunn, and Cabrera (2004), some of these items are not useful because
they do not vary much among families (that is, more than 90 percent to 95 percent of all families make the
same response).
24. See http://jenni.uchicago.edu/idest-tech.
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Omitted Inputs

from the sample likelihood. Appendix 2 presents our sample likelihood. We now pre-
sent and discuss our empirical results using the CNLSY data.

A. Empirical Results

We first present our estimates of an age-invariant version of the technology where we
assume no critical and sensitive periods. We report estimates of a model with critical
and sensitive periods in Subsection 5 below.

1. Estimates of Time-Invariant Technology Parameters

Using the CNLSY data, we estimate the simplest version of the model that imposes
the restriction that the coefficients on the technology equations do not vary over peri-
ods of the child’s life cycle, there are no omitted inputs correlated with ut, and the
measurement error is classical. In Table 2 we report results in the scale of standard-
ized test scores. We normalize the scale of the investment factor uIt on different meas-
ures. Columns 1 and 4 show the estimated noncognitive and cognitive skill
technologies, respectively, when we normalize the investment factor on family in-
come. Columns 2 and 5 show the estimated parameters when we normalize the in-
vestment factor on ‘‘trips to the museum.’’ Finally, in Columns 3 and 6 we show
the results when we normalize the factor loading in ‘‘trips to the theater.’’ The esti-
mated technology is robust to different normalization assumptions.26

Table 7
Unanchored Technology Equations:a Measurement Error is Classical, Allows for
Omitted Input l Correlated with ut , White Males, CNLSY/79

Independent Variable Noncognitive Skill uNt+1
! "

Cognitive Skill uCt+1
! "

Lagged noncognitive skill, uNt
! "

0.8848 0.0276
(0.021) (0.013)

Lagged cognitive skill, uCt
! "

0.0022 0.9891
(0.013) (0.039)

Parental investment, uIt
! "

0.0797 0.0844
(0.020) (0.017)

Omitted correlated inputs, l 0.2835 1.0000
(0.134) (normalized)

a. Let u#t ¼ uNt ; u
C
t ; u

I
t

! "
denote the noncognitive, cognitive and investment dynamic factors, respectively.

Let l denote omitted inputs that are potentially correlated with ut. The technology equations are:

ukt+1 ¼ gk1u
N
t + gk2u

C
t + gk3u

I
t + g

k
4l + n

k
t :

In this table we show the estimated parameter values and standard errors (in parentheses) of
gk1;g

k
2; g

k
3 and g

k
4: Note that for identification purposes we normalize gC4 ¼ 1: Investment is normalized

on family income.

26. The magnitude of the estimated parental investment effect clearly depends on the scale in which invest-
ments are measured.

Cunha and Heckman 761



Discrete measurements

• In many cases the measurements are discrete
• In this case the simple covariance restrictions do not identify the factor

loadings
• In this case we need to set up the problem accounting for such

discreteness if we wish to estimate all factor loadings
• Under linearity however the problem is still quite simple; the IV

strategy with two measurements will work so long as we have at least
one continuous measurement

• This becomes much more complex with nonlinear models.



Discussion

• Why is this useful and where does it take us?
• The linear factor model is interesting but of limited usefulness from an

economic point of view
• Embedded in this is the assumption that inputs in the production

function are perfectly substitutable for each other.
• Hence we cannot answer questions relating to the

complementarity/substitutability of investments



Material from Cunha, Heckman and
Schennach

• Consider as an alternative the production function

θ
c
it+1 = [γ1(θ

c
it)

ρ + γ
c
2 (θ

N
it )ρ + γ

c
3 (θ

I
it)

ρ ]
1
ρ + η

c
it

• Now we have an interesting testable hypothesis: ρ = 1.
• Take this in the context of child development and ask whether say

parental time and child care or expenditures are perfectly substitutable
• And more interestingly: how substitutable are investments at different

ages.
• Here the problem is much more complex: it is a nonlinear model with

measurement errors.
• However, we know it is identifiable from the Kotlarski theorem, since

the latter establishes the non-parametric identification of the
distribution of θ : In general the conditional mean will be nonlinear.



A model for the timing of investments
• Consider the human capital production function

Q = [τ1I
φ

1 + τ2I
φ

2 + τ3θ
φ
c + τ4θ

φ
p ]1/φ

COGNITIVE AND NONCOGNITIVE SKILL FORMATION 887

These outcome equations capture the twin concepts that both cognitive and
noncognitive skills matter for performance in most tasks in life, and have dif-
ferent effects in different tasks in the labor market and in other areas of social
performance. Outcomes include test scores, schooling, wages, occupational at-
tainment, hours worked, criminal activity, and teenage pregnancy.

In this paper, we identify and estimate a constant elasticity of substitution
(CES) version of technology (2.1) where we assume that θC"t" θN"t" IC"t" IN"t"
θC"P , and θN"P are scalars. Outputs of skills at stage s are governed by

θC"t+1 = [γs"C"1θ
φs"C

C"t + γs"C"2θ
φs"C

N"t(2.3)

+ γs"C"3I
φs"C

C"t + γs"C"4θ
φs"C

C"P + γs"C"5θ
φs"C

N"P ]1/φs"C

and

θN"t+1 = [γs"N"1θ
φs"N

C"t + γs"N"2θ
φs"N

N"t(2.4)

+ γs"N"3I
φs"N

N"t + γs"N"4θ
φs"N

C"P + γs"N"5θ
φs"N

N"P ]1/φs"N "

where γs"k"l ∈ [0"1], ∑
l γs"k"l = 1 for k ∈ {C"N}, l ∈ {1" % % % "5}, t ∈ {1" % % % "T },

and s ∈ {1" % % % "S}. 1/(1 − φs"k) is the elasticity of substitution in the inputs
producing θk"t+1, where φs"k ∈ (−∞"1] for k ∈ {C"N}. It is a measure of how
easy it is to compensate for low levels of stocks θC"t and θN"t inherited from the
previous period with current levels of investment IC"t and IN"t . For the moment,
we ignore the shocks ηk"t in (2.1), although they play an important role in our
empirical analysis.

A CES specification of adult outcomes is

Qj = {ρj(θC"T+1)
φQ"j + (1 − ρj)(θN"T+1)

φQ"j }1/φQ"j "(2.5)

where ρj ∈ [0"1] and φQ"j ∈ (−∞"1] for j = 1" % % % "J. 1/(1−φQ"j) is the elastic-
ity of substitution between different skills in the production of outcome j. The
ability of noncognitive skills to compensate for cognitive deficits in producing
adult outcomes is governed by φQ"j . The importance of cognition in producing
output in task j is governed by the share parameter ρj .

To gain some insight into this model, consider a special case investigated in
Cunha and Heckman (2007), where childhood lasts two periods (T = 2), there
is one adult outcome (“human capital”) so J = 1" and the elasticities of sub-
stitution are the same across technologies (2.3) and (2.4) and in the outcome
(2.5), so φs"C = φs"N = φQ = φ for all s ∈ {1" % % % "S}% Assume that there is one
investment good in each period that increases both cognitive and noncognitive
skills, though not necessarily by the same amount (Ik"t ≡ It , k ∈ {C"N}). In this
case, the adult outcome is a function of investments, initial endowments, and
parental characteristics, and can be written as

Q = [τ1I
φ
1 + τ2I

φ
2 + τ3θ

φ
C"1 + τ4θ

φ
N"1 + τ5θ

φ
C"P + τ6θ

φ
N"P]1/φ"(2.6)

• Here we have (as an example) adult human capital depending on
investments in two periods, initial endowments and parental
characteristics

• Take lifetime discounted earnings to be R(Q) = ∑
A
t=3 β twQ with w

being the constant wage (for simplicity)
• We can derive an optimal rule for parental investments
• The optimal investment rule then becomes

log(
I1
I2

) =
1

1−φ

[
log(

τ1

τ2
)− log(1+ r)

]
• Amount of total investment driven by cost of raising funds and altruistic

link between families.
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FIGURE 1.—Ratio of early to late investment in human capital as a function of the ratio of
first period to second period investment productivity for different values of the complementarity
parameter; assumes r = 0. Source: Cunha and Heckman (2007).

3. IDENTIFYING THE TECHNOLOGY USING DYNAMIC FACTOR MODELS

Identifying and estimating technology (2.1) is challenging. Both inputs and
outputs can only be proxied. Measurement error in general nonlinear specifi-
cations of technology (2.1) raises serious econometric challenges. Inputs may
be endogenous and the unobservables in the input equations may be correlated
with unobservables in the technology equations.

This paper addresses these challenges. Specifically, we execute the following
tasks: (i) Determine how stocks of cognitive and noncognitive skills at date t
affect the stocks of skills at date t + 1, identifying both self-productivity (the
effects of θN"t on θN"t+1 and of θC"t on θC"t+1) and cross-productivity (the ef-
fects of θC"t on θN"t+1 and of θN"t on θC"t+1) at each stage of the life cycle.
(ii) Develop a nonlinear dynamic factor model where (θt" It" θP) is proxied
by vectors of measurements which include test scores and input measures as
well as outcome measures. In our analysis, test scores and personality eval-
uations are indicators of latent skills. Parental inputs are indicators of latent


