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Introduction

e Child development is about the intergenerational transmission of
poverty and human capital development.

o It matters because poverty is associated with permanent cognitive and
health deficits with longer term effects.
e Understanding HC development involves understanding:
@ The human capital production function from an early age and the role of
investments
® what may be the optimal structure of investments
©® How parents make decisions and what is their information set
@ How effective policy can be and how it interacts with parental decisions
@ It is an interdisciplinary field that needs to draw from economics,
psychology and measurement, nutrition and neurology and even genetics.



Outline

@ Estimating human capital production functions
® Models of the family and investing in children

© Field Experiments on child development and interpreting them.



Human Capital production functions:
Background

Suppose we wish to estimate a human capital production function

Fundamentally the problem we need to face is that neither output nor
input is directly observable.

We tend to have measures that reveal indirectly inputs and outputs in
the human capital production function

From this perspective this is a (complex) measurement error problem:
inputs and output is measured with error



Background

The flip side of this is that all the measures we observe are substantive
in themselves

However they may be generated by a small set of latent factors

For example how many factors underlie asset prices? (King, Sentana,
and Wadhwani, 1994 Econometrica)

How many dimensions does intelligence have?

We will work with the first interpretation: rather than investigating the
appropriate number of dimensions we will assume them known and
discuss estimation of HC production functions



Linear Production Functions
Formulating, Identifying and Estimating the Technology of Cognitive and
noncognitive Skill Formation by Cunha and Heckman JHR, 2008

Define two dimensions of skill: cognitive skill (6€) and non-cognitive
skill ()

Now consider a production function describing skill accumulation
051 = U105 +1505 +156) +nj;
O =1+ 105+ 1’6 + oL +nf

The term Tl,J-t is an unobserved random factor that does not correspond
to any measurement.

For now we will assume it is independent of the latent factors Gft
(exogeneity)

The model above implies that past skill levels and investments Gilt
produce future cognitive and non-cognitive skills

It is designed to reflect the technological constraints that govern human
capital policy



Linear Production Functions

The point is that we cannot measure the 6 directly (without error).

Instead we have a set of measurements in the form of test scores,
behavioral problem index and HOME score (Home Observation
Measurement of the Environment)

It turn out that we need a minimum of two measurements per factor if
all measures are independent of each other.

Take the system of measurement equations (and henceforth drop the
time index t unless needed)

my = ay + 3,0 e j=c N k=12

These equations relate what we actually observe (m) to the latent
factors (8).

The ultimate aim is to estimate the joint distribution of 6 from which
we can then deduce E(67,. ,16;), j = c,N



Identification

o At this point we need the following normalisations:
e Since we do not observe the latent factors we need to normalize one of the
factor loadings per factor to 1(e.g. 311 =1)
e We also assume that £(6/) = 0 and hence E(n7,,) = a}, . Hence forth we
will assume measurements are zero mean.



Measurement Error

e In its simplest form the measurement errors are assumed iid (classical)

e In general we can allow for dependence of errors across measurements
(depending on how many measurements we have)

e Importantly we do not need to specify the distribution of the
measurement errors



Kotlarski Theorem

The key theorem in this literature is the Kotlarski theorem (1967 Pacific
Journal of Mathematics):

Under the measurement error structure Y = 0 + € with at least two
measures per latent factor and iid errors the distribution of the latent
factors and of the measurement errors is identified.

This powerful result is at the heart of all the results. The important
point is that all we need is independence of the measurement errors.

Everything else is nonparametrically identified.



The Main Idea

The key idea about identification is as follows. It is a deconvolution
problem.

Take a one factor model and assume known factor loadings.
The data provides the unconditional distribution of observables f(m).

This can be written as
f(m) = [ falml6)e(6)d0

The measurement equations together with the distribution of
measurement errors define 7,(m|6).

Effectively the theorem states that if we can write
fm(m|0) = fim(m1|0) X fom(m2|0) then we can identify
nonparametrically the form of fi,,, fom, and the object of interest g(6).



Estimation

e The problem is not quite the from we want it because of the factor
loadings

e However redefining the measurements as nvf:k / aj1 « they are now in the
form of the Kotlarski theorem.

o Thus estimation takes place in two stages:

@ The factor loadings are estimated a’1 « first.
® The joint distribution of the latent factors is then estimated



Estimating the Factor Loadings

e Write the measurement system as
M=0xA+E

where

e Mis N x (px k) where p is the number of measures per factor, k is the
number of latent factors and N is the number of observations

e O is the matrix of latent factors. Its dimensions is N x k

e Ais the matrix of factor loadings. Itis (p x k) x k

e E is the matrix of all measurement errors

e Embedded in A are the normalization restrictions (so some values are
already set to one) and the fact that each measurement corresponds to
one factor (this can be relaxed). The latter are zero restrictions.



Estimating the Factor Loadings

This formulation implies
V(M) = AV(©)A + V(E)

where V/(X) is the covariance matrix of X.

From the data we know V(M) (we can estimate it). These are
(pk)(pk + 1) known moments

Before any zero restrictions and normalizations the unknowns are
5 1 1

However, with the normalizations, the zero restrictions and the iid
assumptions of the € the system is overidentified.

Solving this system subject to the restrictions provides the factor
loadings and the covariance matrix of the factor loadings.

Note that this step does not use any distributional assumptions



Example

e As an example consider a two factor model with three measurements
for each factor
my; = 601+ us;
My = az01 + uy;
ma; = a3by + us;

myj = 2 + U
ms; = b6 + us;
me; = b36h; + ug;
o Assume E(ugjug) = 1(k = s)o?
e Note the normalization restrictions and the zero restrictions

e We have 21 distinct observed moments and 13 unknowns: the variance
matrix of of 6 (3 elements), a5, as, bo, bz and G,f, k=1,...,6



Example

V(m) = V(6:)+0?

C(ml, m2) = az V(Ol)

C(ml, m3) = a3 V(Gl)
C(mg,mg,) = azas V(el)

e Hence a, = C(my,m3)/C(my,m3); V(61) = C(my,my)/a and so on.

o Note the scope of nonclassical measurement error since the system is
overidentified



Non-Classical Measurement error

e Cunha and Heckman extend their model for non-classical measurement
error:

e Assume that there is one measurement (say the first one) whose errors are
independent from all others (across measurements and time periods)

e Otherwise all other errors can be arbitrarily dependent

e We still impose that measurements are independent of the actual factors -
this is crucial.

o This relaxation of restrictions still allows for at least two independent
instruments - such an assumption is at the heart of this approach



Estimation

Now Suppose we assumed that the latent factors are jointly normal.

This is consistent with the linear production function, although there
are other distributions that have linear conditional expectations

Under joint normality our job is finished because knowing the joint
distribution defines the conditional mean

Under linearity even without normality we can use an IV strategy as
well. This is the approach in Cunha and Heckman (JHR)



Estimation

o Take the structural equations

/t+1 YCG +Yce ‘H’Ce/t‘HLr

e Use the measurement equations to replace the latent factor by a proxy:

—él

i1t

el!t = m{ 1t
e Note that if all measurements are rescaled by dividing by the factor
loadings the coefficients will be scaled in the same way whatever
measurement we use as a proxy.



Estimation

OLS will not work because of measurement error: € and the proxies m
are correlated.

Use the other measurement (17),,) as an instrument. The measurements
errors must be independent

This also gives another perspective to the numerous regressions
including such proxies

The idea of using two independent measures to solve the measurement
error problem in linear and nonlinear models goes back some time (e.g.
Hausman, J., H. Ichimura, W. Newey, and J. Powell, 1991,
Measurement errors in polynomial regression models, Journal of
Econometrics 50, 271-295).



Endogenous inputs

Up to now we have assumed the inputs to be exogenous.
Suppose the inputs are endogenous.

In this context this means that there are unobserved inputs that do not
correspond to any measurements (otherwise we could have included
further latent factors in the same way.

In Cunha and Heckman they suggest a fixed effects approach
n{t = (XUL,- + “{t
With variation over time we can now take first differences of the proxies

Amf1t+1 =Y Amj, + j/fAm,,-\{t + 73€Am/(1t +Auj

Use as instruments the first differences of the other proxy (Anm;,,)

Notice that we can now use the residuals in levels to also estimate the
distribution of the fixed effect Aand the factor loadings, based on the
Kotlarski theorem.



Anchoring

Even after estimating the production function it is hard to interpret the
results if we do not know what the units of measurement refer to.

A useful approach is to anchor the results to some outcome of interest,
such as earnings

So consider the regression of earnings on the latent factors

Yi = a105 + 226 +a36;, + vie

The coefficients on the latent factors transform the latent factor units to
the units of the left hand side; So we can use these to transform the
coefficients of the other equations



Using Factor Scores to estimate linear
factor models

From Heckman, Pinto and Savalyev, American Economic Review 2010

e It is also possible to predict factor scores for each individual and use
these for estimation or descriptive statistics.

o Consider the measurement equation written for one observation

M; = A6; + E;

where 0; is the k x 1 vector of latent factors for the ith individual



Using Factor Scores to estimate linear
factor models

From Heckman, Pinto and Savalyev, American Economic Review 2010

We need a prediction 6; such that £((6;) = 6;)
Consider Some matrix . such that ZA =/

A solution is given by Barttlet’s (1937) estimator where we minimize
the MSE of the prediction .Z M; subject to the restriction .ZA = /.

the optimal is obtained by regressing the measures on the factor

loadings by GLS where the weight matrix is given by the variance of E;
6; = (A'Var(E) *A) A Var(E) ' M;

where £ = (A'Var(E)1A) 1A' Var(E) L.

Bartlett, M. S. (1937) The statistical conception of mental factors,
British Journal of Psychology



Using Factor Scores to estimate linear
factor models

From Heckman, Pinto and Savalyev, American Economic Review 2010

e This procedure leads to an unbiased prediction of the latent factors for
each individual

e However, these factor scores include estimation error, which is not
orthogonal to the predicted latent factor will cause attenuation error.

e We can use the structure of the measurement error to correct for the bias



Correcting for measurement error
Suppose we wish to estimate a regression of the form
yi=0B+¢

The factor score method replace 6; by é,- where é,- = 0, + v; with v;
being the measurement error.

By construction we have that Zé =Yg +X, where X is the
covariance matrix of ¢

We have that § = (A’ A)*1 H
Now note that Cov(8,6) = ¥g. Hence

p/imé = z;zeﬁ

We already have an estimate of > and of X 4.

So we can premultiply by an estimate of Zglzé to correct for the bias:

p=

/\ N

P WY



Results from Cunha and Heckman

o The research question is:

How do skills get formed?

How persistent are initial conditions

What is the productivity of investments

How does the production function between cognitive and noncognitive
skills differ



The Data

Table 1
Summary Dynamic Measurements: White Children NLSY/1979

Age 6 and 7 Age 8 and 9 A

Standard Standard
Observations  Mean Error  Observations  Mean Error

o

Piat math® 753 —1.0376 0.5110 799 0.0423  0.6205
Piat reading recognition® 751 —1.0654 0.4303 795 —0.0932  0.6543
Antisocial score® 753 0.0732  0.9774 801 —0.0843 10641
Anxious score® 778 0.1596 1.0016 813 —0.0539 1.0187
Headstrong score® 780 0.0192  0.9882 813 —0.2127 1.0000
Hyperactive score® 780 —0.0907 0.9673 815 —0.1213 1.0148
Conflict score® 779 0.0177 0.9977 815 —0.0057 0.9935
Number of books” 629 39173 0.3562 821 3.9220 0.3104
Musical instrument® 628 0.4650 0.4992 821 0.4896  0.5002
Newspaper® 629 0.5326  0.4993 821 0.5043  0.5003
Child has special lessons® 627 0.5470 0.4982 820 0.7049  0.4564
Child goes to museums” 628 2.2596  0.9095 821 2.3082 0.8286
Child goes to theater 630 1.8111 0.8312 820 1.8012 0.7532
Natural logarithm of family income® 865 104915 1.3647 936 10.4494  1.5689
Mother’s highest grade completed” 1053 12.9620 2.2015 1053 12.9620 2.2015
Mother’s arithmetic reasoning score® 776 0.6050 1.0132 776 0.6050 1.0132
Mother’s word knowledge score® 776 0.5894  0.7666 776 0.5894  0.7666
Mother’s paragragh composition score® 776 0.5464 0.7311 776 0.5464 0.7311
Mother’s numerical operations score® 776 0.4945 0.8189 776 0.4945 0.8189
Mother’s coding speed score® 776 0.4554  0.8084 776 0.4554  0.8084
Mother’s mathematical knowledge score® 776 0.5297 1.0259 776 0.5297 1.0259

a. The variables are standardized with mean zero and variance one across the entire CNLSY/79 sample.



No Omitted Inputs

Table 2
Unanchored Technology Equations: Measurement Error is Classical, Absence of

Omitted Inputs Correlated with 6, White Males, CNLSY/79

Noncognitive Skill (67,) Cognitive Skill (65,)

Independent Variable (€)) 2) 3) ) ) 6)
Lagged noncognitive skill, (6)) 0.884 0.884 0.884 0.028 0.028 0.028
(0.021) (0.021) (0.021)  (0.013)  (0.013)  (0.013)
Lagged cognitive skill, (6) 0.003 0.003 0.003 0.977 0.977 0.977
(0.013) (0.012) (0.013)  (0.038)  (0.038)  (0.038)
Parental investment, (9{ ) 0.072 0.078 0.080 0.064 0.069 0.071
(0.020) (0.021) (0.024)  (0.013)  (0.014)  (0.015)
Mother’s education, § 0.004 0.004 0.004 0.003 0.003 0.003
(0.008) (0.008) (0.008)  (0.010)  (0.010)  (0.010)
Mother’s cognitive skill, A —0.006 —0.006 —0.006 0.025 0.025 0.025

(0.006)  (0.006)  (0.006)  (0.009)  (0.009)  (0.009)

a. Let 6; = (0;\', 0°, 6{) denote the noncognitive, cognitive and investment dynamic factors, respectively.
Let S denote mother’s education and A denote mother’s cognitive ability. The technology equations are:

k kN o kaC okl ok k k
01 = Y10, #7206, +730; + S +UnA+m,.
In this table we show the estimated parameter values and standard errors (in parentheses) of
y’,‘.vé.vf{. \[1];', and \l;’ﬁ' in Columns 1-6. In Columns 1 and 4, the parental investment factor is normalized
on the log-family income equation. In Columns 2 and 5, the parental investment factor is normalized on
trips to the museum. In Columns 3 and 6, we normalize the parental investment factor on trips to the theater.



Omitted Inputs

Table 7
Unanchored Technology Equations:* Measurement Error is Classical, Allows for

Omitted Input \ Correlated with 0,, White Males, CNLSY/79

Independent Variable Noncognitive Skill (6%,) Cognitive Skill (65,)
Lagged noncognitive skill, (Gfl ) 0.8848 0.0276
(0.021) (0.013)
Lagged cognitive skill, (6) 0.0022 0.9891
(0.013) (0.039)
Parental investment, (6?) 0.0797 0.0844
(0.020) (0.017)
Onmitted correlated inputs, A 0.2835 1.0000

(0.134) (normalized)




Discrete measurements

In many cases the measurements are discrete

In this case the simple covariance restrictions do not identify the factor
loadings

In this case we need to set up the problem accounting for such
discreteness if we wish to estimate all factor loadings

Under linearity however the problem is still quite simple; the IV
strategy with two measurements will work so long as we have at least
one continuous measurement

This becomes much more complex with nonlinear models.



Discussion

Why is this useful and where does it take us?

The linear factor model is interesting but of limited usefulness from an
economic point of view

Embedded in this is the assumption that inputs in the production
function are perfectly substitutable for each other.

Hence we cannot answer questions relating to the
complementarity/substitutability of investments



Material from Cunha, Heckman and
Schennach

Consider as an alternative the production function

1
01 = [n(65)° +75(61)° + 95 (6/)°1" +nj;

Now we have an interesting testable hypothesis: p = 1.

Take this in the context of child development and ask whether say
parental time and child care or expenditures are perfectly substitutable
And more interestingly: how substitutable are investments at different
ages.

Here the problem is much more complex: it is a nonlinear model with
measurement errors.

However, we know it is identifiable from the Kotlarski theorem, since

the latter establishes the non-parametric identification of the
distribution of 6: In general the conditional mean will be nonlinear.



A model for the timing of investments

o Consider the human capital production function

= [Tllf+leép+f39f+f49g]l/¢
Q: ['7'111(15 —|—7'2]£b +T302,| + 740?\5],1 + 750?"13"’_76675/,1—’]1/(1)

e Here we have (as an example) adult human capital depending on
investments in two periods, initial endowments and parental
characteristics

o Take lifetime discounted earnings to be R(Q) = Y4 ; BtwQ with w
being the constant wage (for simplicity)

e We can derive an optimal rule for parental investments
o The optimal investment rule then becomes

h 1
lg(1) =15

e Amount of total investment driven by cost of raising funds and altruistic
link between families.

/og( ) log(1+r)



A model for the timing of investments
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